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Large-scale structures in turbulent multiphase flows 
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117810, USSR 

Received 9 July 1990 

Abstract. A generation of large-scale helical vortices resulting from the instability of small- 
scale helical turbulence with respect to two-scale disturbances is considered. To investigate 
such an instability we consider an incompressible liquid containing rigid particles. An 
equation describing the evolution of mean disturbances is derived and the instability 
increment is obtained. 

1. Introduction 

Magnetic disturbances are known to be amplified by helical turbulence [l] .  The possi- 
bility of amplification of large-scale hydrodynamic fields by small-scale helical turbulence 
is discussed by several researchers [2-41. As in the magnetic case Moiseev et a1 [2] call 
this phenomenon a hydrodynamic a effect, whose existence demands that additional 
factors be taken into consideration, for instance, convection or compressibility. The 
important difference between hydrodynamic and magnetic theories is that the latter 
describe the evolution of magnetic field on the background of a given hydrodynamic 
flow, whereas in hydrodynamics such a situation is more complex. The hydrodynamic 
problem is self-consistent and non-linear. Several workers [2-41 overcame that difficulty 
by introducing an external force which creates a turbulent flow with the necessary 
properties. A generation of large-scale helical vortices resulting from the instability of 
small-scale helical turbulence with respect to two-scale disturbance is considered. In 
order to investigate such an instability we consider an incompressible liquid containing 
rigid particles. 

We restrict ourselves to the case when (i) the characteristic rigid particle dimension 
significantly exceeds all the kinetic scales and (ii) the disturbance scales are sufficiently 
large. We can thus consider rigid particles to form a continuous medium, in which case 
we can use the equations of two-phase hydrodynamics [ 5 , 6 ] .  Later, while deriving the 
averaged equations, we shall often make use of the fact that the relative volume occupied 
by all particles is small enough in order for the collisions between particles to be 
neglected. 
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2. Basic equations 

To describe the motion of viscous incompressible fluid we use the following set of 
equations: 

an/at + div nV = 0 

div V = -4na3 div n(V, - V) 
av,/at + P(V, - V) + (V,V)V, + (l /p)VP = 0 

aV/at + yn(V - V,) + ( W ) V  + (I/p)VP = vV2V 

(1) 

(2) 

(3) 

(4) 

where V and V, are the hydrodynamic velocities of liquid and solid phases, respectively; 
p and p s  are their densities; n is the concentration of rigid particles with radius a; v the 
kinematic viscosity and P the liquid pressure. 

The rigid phase particles are assumed not to interact with each other. The coefficients 

y = 3na3P ps/p P = %(./a’)P/Ps 

characterize Stokes’ friction between the phases. 
Equation (1) is the continuity equation for the rigid particles; equation ( 2 )  describes 

the fluid displacement produced by rigid particles, which results in the divergence of an 
incompressible liquid. The rest of the equations of the set describe the momentum 
conservation law for each of the phases. 

In the set of equations (1)-(4) the Stokes friction is taken into consideration only, 
while the Basse force and the effects due to joint mass force are neglected. This assump- 
tion is true when the characteristic timescales of the processes studied exceed the time 
of establishing the quasi-steady (Stokes) velocity field in a carrying phase around the 
particles, and less than the time of establishing the phase velocity equilibrium [ 5 ] .  

The two-scale approach used is based on the assumption that the perturbed mean 
field of velocities has characteristic scales L and Tand changes slowly at the scales lo and 
to  of a turbulent field. Our main interest is concerned with the evolution of the ensemble 
averaged fluctuation field during the time and space scales which are much greater than 
the energy-containing vortices scales of primary turbulence. 

The variables of the basic set of equations are in the following form: 

v = (V) + V’ v, = (V,) + v; n = (n) + n’ P = ( P )  + P‘ 

where averaging over turbulent fluctuation ensemble is designated by ( ) and the tur- 
bulent component is denoted by a prime. 

The equations for the mean flows 

a(n> 
at 
- + div(n)(V,) + div(n’V,) = 0 
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contain the terms with the unknown Reynolds stresses and are supplemented by the 
corresponding equations for the pulsing components. 

an‘/at + div(n’(V,) + (n)V,) + div(n’Vi - (n’Vi)) = 0 

div V’ = $xu3 an’/at + Sxu3 div(n’V’ - (n’V’)) + $nu3 div(n’(V) + (n)V) 

(9) 

(10) 

aV‘/at + y(n)(V’ - Vi) + yn’((V,) - (V)) + ((V)v)n/’ + (V’V)(V) 

+ ((VrV)V - ((V’V)V)) + [yn’(V’ - Vi) - y(n’(V’ - Vi))] 

+ ( l / p ) V P ’  = vv2v. (12) 

Equations (9)-( 12) will be used later to derive the closed form equations describing 
mean motions. 

In the following the ergodic condition is supposed true, which allows us to replace 
the ensemble average by the local average over space and so to put the problem of 
disturbance evolution at the background of initial state in equations (5)-(12). 

3. The derivation of the averaged equations for disturbances 

Consider the initial state which is characterized by the mean rigid particle concentration 
no and small-scale fluid velocities V r o  and of particles Vg0. The following assumptions 
concerning the hydrodynamic fields are made. 

(i) The liquid phase turbulence is supposed to be homogeneous, isotropic and helical 
with a correlation tensor: 

(V:O(x, t>v;O(x + E ,  t + r ) )  = A(E, t ) E I , k E k  (13) 

where is the Levy-Chivity tensor. The effect of the symmetrical part of the correlation 
tensor was studied in [7], where it was shown that it resulted in additional viscosity 
carried in by turbulence and manifested itself in changing the factor U. These properties 
of turbulence are due to the external source in our problem. 

(ii) Undoubtedly such a helical turbulent velocity field results in hydrodynamic 
motions of rigid phase. However, our assumptions about the Stokes friction between 
phases and neglect of interactions between particles provide us with a possibility of 
neglecting the correlation between the liquid turbulent field and the hydrodynamic field 
of rigid particles. For the same reason we neglect the correlation between rigid particles’ 
hydrodynamic velocities in liquid. This corresponds to the melting of rigid particles in 
the liquid. 

Within the framework of the two-scale model proposed, let us consider the evolution 
of disturbances at the background of the initial state described, which is reduced to the 
following equations: 

(n) = no (V’) = (Vd) = 0 div VIo = div Vio = 0 

avyat + p(Vg0 - W O )  + (vg0V)v;o + ( l / p , )VP’O = 0 
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aV'O/at + yno(Vfo - Vio) + (VfoV)V'O + ( l /p)VPfo = vV2V'0 + F. 

be obtained by means of linearization of the basic equations. 

W' = WO + V' 
where the hatches for the perturbed components are omitted. 

a(n)/dt + div no(Vs)  + div Ns = 0 

Later the closed form equations describing the behaviour of mean disturbances will 

The perturbed small-scale motions are described as follows: 

v; = v: + vg n' = nl P' = PO + P' 

Omitting the non-linear terms in equations (5)-(8) we obtain 

W ) / a t  + y(n) ( (V)  - + y(N - Ns) + Q + (l/p)V(P) = v V 2 ( v )  (17) 
where (n)  is the mean perturbation of the concentration of particles and ( U )  and (Vs) are 
the perturbation of hydrodynamic velocities. 

The above set of equations contains the unknown terms 
Q = ((V1V)VO - (VOV)V') Qs = ((vgv)v: - (v:v)v;)  

N = (n'VO) 
While calculating them we consider symmetry over the indexes part as tending to zero 
for the helical turbulence: 

Ns = (n'v:). 

Q ,  = ((a/ax,)(vhvi' + v,'vO,)) - (vi'(a/ax,)vi) 
Q S ,  = ((a/ax,)(vik%', + V g i V k > )  - (V:i(a/ax,)vg,). 

The methods introduced in [7] for the calculation of the non-symmetrical parts of 
the correlators are used; for this aim we present equations (9)-(12) in the following 
form: 

dnl /d t  + div(n)V: + no div Vi = 0 

div V' = $nu3 an'/at  + $nu3 div(VoV)(n) 

av,'/at + p(v: - V') + ((v,)V)v: + (v:v)(v,> + (l/p,)VP' = 0 

aV'/at + yno(V' - V;) + y(n)(VO - V:) + ((V)V)Vo + (VoV)(V) 

(18) 

(19) 

(20) 

+ (l/p)VP' = V V 2 V ' .  (21) 
The terms which, in the following calculations, result in correlation moments of 

greater than second order are omitted in the system of equations (14)-(17). This allows 
us to get a closed form of the linearized system for the mean motion and corresponds to 
the case when the Reynolds number in the initial turbulent flow is Reo 6 1. 

The assumption concerning the small value of the Reynolds number is related to the 
turbulence realization parameters and it should not be confused with the Reynolds 
number of turbulence arising from the laminar flow. As our interest lies in the evolution 
of small-scale developed turbulence resulting from the initial laminar flow instability, 
our assumption does not make the physical situation worse. The disturbances appearing 
for sufficiently large Reynolds numbers which are due to the cut-off procedure should 
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be taken into account. The following expressions for the searched correlators are derived 
from equations (18)-(21) after simple but lengthy calculations (see appendix) 

(22) N = N  = Q  = 0  

Q = arot(V) 

a = 4xa3n0 J (1 - E) k 4 A ( k ,  o) dk d o  

imp {4na3no[vk2 - (p, /p)p]  + ynO(iw + P ) }  
As a result the following set of closed form equations for mean disturbances is 

obtained: 

d(n)/dt + div no(V,) = 0 

div(V) = $nu3 d(n)/at + $na3no(V) 

W , > / a t  + P((V,) - (V)) + ( l /P,)V(P) = 0 

(23) 

(24) 

(25) 
d(V)/dt + y(n)((V> - (!I,)) + arot(V) + ( l / p ) V ( P )  = vV2(V).  (26) 

4. The vortical instability in the liquid with rigid particles 

The set of equations describing mean disturbances of helical turbulence has been 
obtained in the previous section. These equations contain the terms which could result 
in instability. It can be easily seen that these new terms disappear for potential motions 
and so these are damped. 

Focusing our attention on vortical disturbances, we proceed from equations (23)- 
(26) to the corresponding equations for vorticity: 

aa,/at + @(a, - a )  = 0 

a Q / a t  + yno(a - a,) + a r o t  52 = v V z a  
(27) 

(28) 
where 52 = rot(V), a, = rot(V,). 

The term describing the generation of vortices resulting from the instability is present 
in these equations. The dispersion equation for small disturbances contains two multi- 
pliers with helicity 

and has a solution describing instability with an increment: 

- i o  = - f ( v k 2  + yno + P - ak)  * t [ ( v k 2  + yno + P - 
Then we proceed to the limit of the single-phase medium by tending particle radius 

to zero. Then the factors a,  y and 1/p will also tend to zero. In this limiting case we 
obtain -io = - vk2 which corresponds to disturbance damping in an incompressible 
viscous liquid. 

- 4(Pvk2  - akP)]1 /2 .  

5. Conclusion 

The analysis revealed that helical turbulence in an incompressible liquid with rigid 
particles is unstable to vortical disturbances. The generation terms formally coinciding 



SA474 A V Belyan er a1 

with those in the theory of hydromagnetic dynamics are contained in the equations 
derived to vorticity at the scale of mean motions. It should be noted that only helicity 
is enough for the process of generation in magneto hydrodynamics. In hydrodynamic 
theory, because of the mentioned differences, it is also necessary to take into account 
additional factors. In this paper one such additional factor is the presence of rigid 
particles whose motions provide the existence of divergence at a turbulent scale and thus 
provide a non-zero value of the Reynolds stresses in the averaged equations. 

Thus, when the turbulence appears from the initial laminar flow there could arise 
sufficient conditions for the reverse energy cascade from a small scale to a bigger one. 

The instability discovered could be treated as a secondary one which could result in 
vortical coherent structures. 
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Appendix 

The equations which describe Q, Q,, N and N, are obtained from (18)-(21) following 
Krause eta1 [ 7 ] .  Substitution of (18) into (19) yields 

( a / a x , ) V :  = - 4na3(V:, - n / i ) ( a / a x k ) ( n )  - 4 n a 3 n o ( ~ / ~ x k ) V ~ , .  (A.1) 

Substituting x by x + E ,  we make a coordinate displacement in (A.1). Multiplying (A. 1) 
by V o ( x ,  t )  and keeping it linear with respect to E terms (in the two-scale approach the 
second-order terms and higher-order terms could be omitted) we obtain 

(n(x  + 5,  r f Z)) = ( n ( x ,  t ) )  + E k ( a / a x ) ( n ( x ,  

After averaging, the following equations are obtained: 

( V p ( x ,  t ) ( a / a x , ) V h ( x  + E ,  t + z)) = - 4 n a 3 ( ( V P ( x ,  t)V:,(X + 5, t + t)) 
- ( v ! , ( x ,  t)v",x + E ,  t + z > > ) ( a / a x k ) ( n ( x ,  t ) )  

The following expression is derived from obtained equations by integrating over K 
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All other additional terms contained in averaged equations become zero due to the 
equivalence of Qos(x,  E ,  t ,  t )  and Qos(x, 6 ,  t ,  t )  to zero. 
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